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1 Introduction

A well known problem in computational electromagnetics is the appearance of
“spurious modes” arising from incorrectly imposing divergence constraints. To
avoid imposing these constraints directly, which is difficult, it has been suggested
that they need to be enforced only on the boundary of the domain ([5], [7]). This
has some significant advantages. For instance, the vector Helmholtz equation
with a divergence constraint on the field can then be solved using standard finite
element spaces instead of more complex spaces of edge elements. Furthermore,
as we will show below, the divergence boundary condition can be treated as a
natural boundary condition.

It is essential to know when the interior and boundary formulations of diver-
gence constraints give the same result and that is the main aim of this work. We
shall show that the formulations are equivalent if and only if the scalar Poisson
equation with any smooth right hand side and Dirichlet boundary conditions
has a solution in H2. When this is not true, a simple minded application of
divergence boundary conditions as in [5] and [7] will normally give incorrect
solutions with a nonzero divergence.

Our results for systems with the interior divergence constraint are obtained
by formulating the problem in the space V defined in the next section. This
approach avoids enforcing the divergence constraint explicitly — it is automati-
cally satisfied. We provide a proof of this fact for interior problems; for exterior
domains see [4]. Unfortunately, H1 is not dense in V in general. To use stan-
dard H1 finite elements we impose the divergence condition on the boundary
and formulate the problem in the space H1

0t ⊂ H1 defined below. We discuss
the relationship between the V and H1

0t formulations in some detail.
To avoid relatively unimportant technical issues we will give proofs of these

results for the vector Poisson equation subject to tangential boundary conditions
and a divergence constraint. In the end we will show how they may be extended
to other problems including the vector Helmholtz case of electromagnetics.

The next section gives the strong forms of the governing equations and the
reasoning behind the use of divergence boundary conditions. It also contains a
formula for the boundary divergence, which is used to reformulate the divergence
boundary condition as a natural boundary condition in H1 setting. Section 3
sets up a weak form for the equation with the interior divergence constraint
and proves the coercivity for the weak form, which follows from a compact
embedding result for vector fields. Sections 4 and 5 prove coercivity for the weak
form which uses divergence boundary conditions. This time, coercivity follows
from a close and somewhat surprising connection with the previous weak form.
This result is based on a trace theorem proved in section 5.

The coercivity results of sections 3–5 are used in section 6 to prove equiv-
alence of the strong and weak formulations (Theorem 2). We also discuss in
what sense the boundary divergence condition is satisfied and prove a formula
for calculating the divergence on the boundary (Lemma 10 in section 6). Section
7 contains a discussion of when one can say a priori that the interior and bound-
ary divergence formulations are equivalent, and when they are not equivalent
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(i.e. may have different solutions for the same data). It also contains an exam-
ple showing nonequivalence of the two formulations for nonconvex polyhedra.
In section 8 we give the modifications to include the Helmholtz equation and
briefly mention some other extensions. Section 9 mentions some implications
for numerical approximations of the problem.

2 Formulation of the problems

Assume that Ω is an open bounded subset of RN , N = 2 or 3, with a connected,
Lipchitz boundary Γ.

We will consider the relationship between the problems
−4u = f in Ω,

div u = 0 in Ω,

u× n = 0 on Γ
(1)

and 
−4u = f in Ω,

div u = 0 on Γ,

u× n = 0 on Γ.

(2)

We assume that f ∈ L2(Ω)N and the compatibility condition div f = 0 is
satisfied. Superficially it seems that the two problems are equivalent. Indeed,
if u is a solution of (1), it is clearly a solution of (2). Conversely, if u is a
solution of (2), then taking the divergence of the first equation of (2) we get
that 4(div u) = 0, and since div u = 0 on Γ, one might argue that div u = 0
in Ω, so u is a solution of (1). This is basically the reasoning in [7]. But it
might not always be true. The difficulty is caused by insufficient regularity
of the solution. Laplace’s equation with Dirichlet boundary conditions has a
unique solution in H1(Ω), but in general we cannot assume that div u ∈ H1(Ω).
It may be only in L2(Ω) and the homogeneous equation for div u may have a
nonzero solution in L2(Ω) (this happens, for example, in the case of domains
with reentrant corners).

In order to discuss the the relationship between (1) and (2) we first have to
make explicit in what function spaces we look for the solutions. It turns out
that the natural space for (1) is

V = {u ∈ L2(Ω)N | div u ∈ L2(Ω), curl u ∈ L2(Ω)N ′
, u× n|Γ = 0},

where N ′ = 3 if N = 3 and N ′ = 1 in N = 2. The standard scalar product in
V is

(u,v)V =
∫

Ω

u · v + curl u · curl v + div u div v.

On the other hand, the natural space for (2) is

H1
0t(Ω) = {u ∈ H1(Ω)N | u× n|Γ = 0}
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with the scalar product

(u,v)1 =
∫

Ω

u · v +∇u · ∇v.

We will show that while problem (1) has a unique solution in V , it may not
be solvable in H1

0t(Ω), and while problem (2) has a unique solution in H1
0t(Ω),

the solution may not be unique in V . We will also discuss in what sense the
divergence boundary condition in problem (2) is satisfied.

It is shown in section 6 (under the additional assumptions that Γ is piecewise
C1,1 and the jump condition given in (6) is satisfied) that problem (2) (in
H1

0t(Ω)) is equivalent to: find u ∈ H1
0t(Ω) such that

−4u = f in Ω,
∂u
∂n

· n + κu · n = 0 on Γ,

u× n = 0 on Γ,

(3)

where κ is the curvature of the boundary (κ = div n), which is defined almost
everywhere on Γ. This follows from the result (see Lemma 10 for the precise
formulation)

div u|Γ =
∂u
∂n

· n|Γ + κu · n|Γ.

It is convenient to begin with the weak formulations of problems (1) and (3).
The next three sections deal with the coercivity of the corresponding weak forms.
Following this we show the equivalence of the strong and weak problems and
then examine the relationship of problems (1) and (3), and show the equivalence
of problems (2) and (3).

3 Weak Formulation in V

Let Ω and f be as above. To derive the weak formulation of (1) in V we substitute
curl curl u for −4u in (1), multiply the first equation by v (belonging to V ),
the second by div v and integrate by parts using the boundary condition. For
u,v ∈ V define

a(u,v) =
∫

Ω

curl u · curl v + div u div v. (4)

Then the statement of the weak problem is: find u ∈ V such that

a(u,v) =
∫

Ω

f · v ∀v ∈ V. (5)

The only hypothesis of the Lax-Milgram lemma which is nontrivial to check
is the coercivity of a on V . It follows from the next compact embedding theorem.
The embedding is actually a corollary of the regularity result in [1], where it is
proved that V ⊂ H1/2(Ω). We have provided a new and concise proof.
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Theorem 1 V is compactly embedded in L2(Ω)N .

The proof makes use of Murat’s div–curl lemma (see [8]).

Lemma 1 (div-curl lemma). Let U be an open subset of RN . Let vn and
wn be weakly convergent sequences in L2(U)N with the limits v and w corre-
spondingly. Assume that {divvn}∞n=1 and {curlwn}∞n=1 lie in compact subsets
of H−1(U) and H−1(U)N ′

respectively. Then for every φ ∈ D(U),∫
U

φvn ·wn →
∫

U

φv ·w as n →∞.

Proof of Theorem 1. Let un be a weakly convergent sequence in V with the
limit u. We want to show that un converges strongly in L2(Ω). The idea is
to extend un outside Ω in two ways: vn and wn will be the extensions with
“good” divergence and curl respectively. We construct the extensions so that
suppvn ∩ suppwn ⊂ Ω and then use div-curl lemma for these sequences.

Let U be an open ball containing Ω. We start with the construction of vn

(the extension with div vn in a compact set of H−1(U)). For each n ∈ N we
define gn ∈ H1(U \ Ω) by 

4gn = 0 in U \ Ω,
∂gn

∂n
= un · n on ∂Ω,

gn = 0 on ∂U.

Now define vn by

vn =

{
un in Ω
∇gin in U \ Ω

and wn by

wn =

{
un in Ω
0 in U \ Ω.

Then

div vn =

{
div un in Ω,

0 in U \ Ω

and

curlwn =

{
curl un in Ω,

0 in U \ Ω

so {divvn}∞n=1 and {curlwn}∞n=1 are bounded subsets of L2(U) and L2(Ω)N ′
,

respectively (hence lie in compact sets of H−1(U) and H−1(Ω)N ′
). Moreover,

vn ⇀ v in L2(U)N and wn ⇀ w in L2(U)N , where v and w are similar
extensions of u.
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Now choose φ ∈ D(U) such that φ ≡ 1 in Ω. Using the div-curl lemma we
get (note that vn ·wn = 0 in U \ Ω)∫

Ω

u2
n =

∫
U

φvn ·wn →
∫

U

φv ·w =
∫

Ω

u2.

This together with un ⇀ u in L2(Ω) shows that un → u in L2(Ω).

We will use Peetre’s lemma (see [2], for example) in the following form

Lemma 2 Let E, E1 and E2 be Banach spaces. Let A1 and A2 be continuous
linear operators from E to E1 and from E to E2 respectively. Assume that there
exists C > 0 such that

‖u‖E ≤ C (‖A1u‖E1 + ‖A2u‖E2) ∀u ∈ E.

Assume also that KerA1 = {0} and that A2 is compact. Then there is C1 > 0
such that

‖u‖E ≤ C1‖A1u‖E1 ∀u ∈ E.

The coercivity result is then

Lemma 3 There is C > 0, independent of v, such that

a(v,v) ≥ C‖v‖2
V ∀v ∈ V

Proof. We use Lemma 2 with E = V , E1 = L2(Ω)×L2(Ω)N ′
, E2 = L2(Ω)N

and A1u = (div u, curl u), A2u = u. By Lemma 1 the operator A2 is compact.
We must show that Ker A1 = {0}. But

u ∈ Ker A1 ⇔ div u = 0 and curl u = 0 in Ω, and u× n = 0 on Γ.

This implies that u = 0 (by using the gradient potential, for example). So by
Lemma 2 the result follows.

The Lax-Milgram lemma now implies that (5) has a unique, stable solution
in V .

4 Weak Formulation in H1
0t(Ω)

For deriving the weak form of (3) we shall make additional assumptions about
the smoothness of the boundary. In the following Ω is a bounded subset of RN ,
N = 2 or 3, with a connected, Lipchitz and piecewise C1,1 boundary Γ, i.e.
Γ = ∪n

j=1Γj with
◦
Γj ∩

◦
Γi= ∅ for i 6= j, and Γj , j = 1, . . . , n are of class C1,1.

Let γ denote the set of “edges and corners”, i.e.

γ =
n⋃

i,j=1
i6=j

(
Γ̄i ∩ Γ̄j

)
.
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We assume that the jump of the normal on γ is bounded below, i.e. there is
δ > 0 such that for all x ∈ γ with x ∈ Γ̄i ∩ Γ̄j , i 6= j we have

ni(x) · nj(x) ≤ 1− δ, (6)

where ni(x) and nj(x) are the limits of the unit outer normals when approaching
x from Γi and Γj , correspondingly.

This condition is satisfied for all polygons and polyhedra. Also included are
polygons and polyhedra with curved sides. It excludes three-dimensional bodies
which have points like the tip of a cone, and bodies with edges which “flatten
out”, i.e. the angle between the faces gets arbitrarily close to π. This condition
is needed for proving some results about trace operators in the next section,
and implicitly in the proof of Lemma 4, which gives the relation between the
two weak forms.

To obtain a suitable weak form for (3) we proceed formally, multiplying the
equation by a test function v ∈ H1

0t(Ω) and integrating by parts as usual. We
get ∫

Ω

∇u · ∇v −
∫

Γ

∂u
∂n

· v =
∫

Ω

f · v.

Rewriting the boundary term as a sum over the smooth boundary pieces and
using the boundary conditions on u and v gives the weak problem: find u ∈
H1

0t(Ω) such that∫
Ω

∇u · ∇v +
n∑

j=1

∫
Γj

κu · v =
∫

Ω

f · v ∀v ∈ H1
0t(Ω). (7)

Since κ ∈ L∞(Γj), by the usual trace theorem the boundary term is well de-
fined. Note that, in this framework, the divergence boundary condition (or the
equivalent one in problem (3)) is natural.

Proving coercivity of the weak form (7) is a nontrivial matter because the
curvature can be of either sign. The result will follow from the next lemma
whose proof is deferred to the following section.

Lemma 4 Assume that Ω satisfies the assumptions made in the beginning of
the section. For u,v ∈ H1

0t(Ω) we have

a(u,v) =
∫

Ω

∇u · ∇v +
n∑

j=1

∫
Γj

κu · v, (8)

where Γj, j = 1, . . . , n are the smooth (C1,1) pieces of Γ, and a is the same as
in (4).

This means that the weak problem (7) is in fact equivalent to: Find u ∈
H1

0t(Ω) such that

a(u,v) =
∫

Ω

f · v ∀v ∈ H1
0t(Ω), (9)
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in which the equation is the same as in (5) but the spaces are different.
In fact, one can get (9) from problem (1), but they are not equivalent:

in general we cannot assume that the solution of (1) belongs to H1
0t(Ω), and

we cannot prove later that the solution of (9) satisfies div u = 0. We can
also formally get (9) from (2) by substituting −4u by curl curl u − ∇div u,
multiplying by v and integrating by parts using the boundary conditions, but
this is not easy to justify rigorously (for the solution of (2), curl curl u and
∇div u may not be in L2).

The coercivity result for (9) is:

Lemma 5 There is C > 0 such that

a(u,v) ≥ C‖u‖1 ∀u ∈ H1
0t(Ω).

Proof. We use Lemma 2 with E = H1
0t(Ω), E1 = L2(Ω) × L2(Ω)N ′

, E2 =
L2(Ω)N × L2(Γ)N , A1u = (div u, curl u) and A2u = (u,u|Γ). The operator
A2 : E → E2 is compact because it is bounded as an operator from E to
H1(Ω)×H1/2(Γ)N and the latter is compactly embedded into E2. We already
showed (in the proof of Lemma 3) that Ker A1 = {0}. The result follows.

Applying the Lax-Milgram lemma to the weak form (9) (or, equivalently, to
(9)) and using the coercivity result above shows the existence of a unique stable
solution to (9).

Note that to prove the coercivity of a in H1
0t(Ω) we do not need the additional

smoothness assumptions made in the beginning of this section: they are needed
to make sense of the term containing the curvature in (7) and to show later that
the divergence boundary condition is satisfied for the solution of problem (9).
They are not needed for uniqueness of solution of (9).

5 Proofs for previous section

This section will present the proof of Lemma 4. We will assume throughout the
section that the assumptions made in the beginning of the previous section are
satisfied.

First we need some preliminary results. We begin by recalling some facts
about the trace spaces. First, for Lipchitz Γ ⊂ RN , the following is an equivalent
norm on H1/2(Γ) (see e.g. [3]):

‖φ‖2
H1/2(Γ) = ‖φ‖2

L2(Γ) +
∫

Γ

∫
Γ

|φ(x) − φ(y)|2
|x− y|N dSxdSy.

We will also need the spaces H
1/2
00 (Γj), j = 1, . . . , n, which consist of all func-

tions in H1/2(Γj) whose extension by zero to Γ belongs to H1/2(Γ). The norm
of a function in H

1/2
00 (Γj) is the norm of its extension by zero in H1/2(Γ), i.e.

‖φ‖2

H
1/2
00 (Γj)

= ‖φ‖2
L2(Γj)

+
∫

Γj

∫
Γj

|φ(x) − φ(y)|2
|x− y|N dSxdSy

+2
∫

Γ\Γj

∫
Γj

|φ(x)|2
|x− y|N dSxdSy.
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We will use the same notation for a function in H
1/2
00 (Γj) and its extension by

zero to Γ.
We will also need the following result:

Lemma 6 The trace operator v 7→ v ·n|Γj is a continuous linear operator from
H1

0t(Ω) onto H
1/2
00 (Γj).

Proof. We use the fact that the usual trace operator v 7→ v|Γ is a continuous
linear operator from H1(Ω)N onto H1/2(Γ)N . First we will show that if v×n = 0
and the jump condition (6) is satisfied, then ‖v ·n‖

H
1/2
00 (Γj)

≤ C‖v‖H1/2(Γ). Let
φ = v · n on Γj and φ ≡ 0 on Γ \ Γj . Clearly ‖φ‖H1/2(Γj) ≤ ‖v‖H1/2(Γj), so we
have to show only that∫

Γ\Γj

∫
Γj

|φ(x)|2
|x− y|N dSxdSy ≤ C‖v‖2

H1/2(Γj)
.

Because of the jump condition we can find ε > 0 such that

x ∈ Γj , y ∈ Γ \ Γj , |x− y| < ε ⇒ n(x) · n(y) ≤ 1− δ

2
.

For x ∈ Γj, y ∈ Γ \ Γj such that |x− y| < ε we have

|v(x) − v(y)|2 = |v(x)|2 + |v(y)|2 − 2(v(x) · n(x))(v(y) · n(y))(n(x) · n(y))

≥ |φ(x)|2 + |v(y)|2 − 2|φ(x)| |v(y)|
(

1− δ

2

)
≥ |φ(x)|2

(
1−

(
1− δ

2

)2
)

= |φ(x)|2
(

δ − δ2

4

)
.

Since δ − δ2

4
> 0 (note that 0 < δ < 2, otherwise the jump condition could not

be satisfied), we have∫
Γ\Γj

∫
Γj

|φ(x)|2
|x− y|N dSxdSy

=
∫

Γ\Γj

∫
Γj\Bε(y)

|φ(x)|2
|x− y|N dSxdSy +

∫
Γ\Γj

∫
Γj∩Bε(y)

|φ(x)|2
|x− y|N dSxdSy

≤ 1
εN

∫
Γ\Γj

∫
Γj

|φ(x)|2dSxdSy +
1

δ − δ2

4

∫
Γ\Γj

∫
Γj

|v(x) − v(y)|2
|x− y|N dSxdSy

≤ C‖v‖2
H1/2(Γ).

Consequently, the operator v 7→ v · n|Γj is a continuous linear operator from
H1

0t(Ω) to H
1/2
00 (Γj).

Let φ ∈ H
1/2
00 (Γj) be given. Extend it by 0 to Γ. Then φn ∈ H1/2(Γ) and

we can find v ∈ H1(Ω)N such that v|Γ = φn and ‖v‖1 ≤ C‖φn‖H1/2(Γ) ≤
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C1‖φ‖H
1/2
00 (Γj)

. Clearly v ∈ H1
0t(Ω), so the trace operator is onto.

The next lemma gives a formula for calculating the divergence on the bound-
ary.

Lemma 7 For smooth u the restriction of div u to Γj satisfies

div u|Γj =
(

divΓuτ + κu · n +
∂u
∂n

· n
)∣∣∣∣

Γj

where uτ is the tangential component of u and divΓ is the divergence of a tan-
gential vector field in the tangential coordinate system.

Proof. To calculate div u at some x0 ∈ Γj let us fix a coordinate system i, j,
k (if N = 2 then omit j), where i, j are tangent to Γ at x0 and k is the normal at
x0 (we can do this for every x0 in the interior of Γj). Denote uτ = u− (u ·n)n.
Then

div u(x0) =
∂u
∂i

(x0) · i +
∂u
∂j

(x0) · j +
∂u
∂k

(x0) · k

=
∂uτ

∂i
(x0) · i +

∂uτ

∂j
(x0) · j +

∂[(u · n)n]
∂i

(x0) · i +
∂[(u · n)n]

∂j
(x0) · j

+
∂u
∂n

(x0) · n(x0)

=
(

divΓuτ + κu · n +
∂u
∂n

· n
)∣∣∣∣

x=x0

,

where
divΓuτ (x0) =

∂uτ

∂i
(x0) · i +

∂uτ

∂j
(x0) · j.

Now we can prove lemma 4:
Proof of Lemma 4. For v ∈ H1

0t(Ω) and smooth u (we do not require
u× n = 0 yet, because it does not seem straightforward to show the density of
smooth functions with zero tangential trace in H1

0t(Ω)) we have∫
Ω

curl u · curl v + div u div v =
∫

Ω

curl curl u · v −∇div u · v +
∫

Γ

(div u)v · n

= −
∫

Ω

4u · v +
∫

Γ

(div u)v · n

=
∫

Ω

∇u · ∇v +
∫

Γ

(
div u− ∂u

∂n
· n
)

v · n.

By Lemma 7∫
Ω

curl u · curl v + div u div v =
∫

Ω

∇u · ∇v +
n∑

j=1

∫
Γj

(divΓuτ + κu · n)v · n.
(10)
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For any φ ∈ H
1/2
00 (Γj) (extended by zero to Γ) we can find v ∈ H1

0t(Ω) such
that v|Γ = φn and ‖v‖1 ≤ C‖φ‖

H
1/2
00 (Γj)

. From (10) we get∣∣∣∣∣
∫

Γj

(divΓuτ + κu · n)φ

∣∣∣∣∣ ≤ C ′‖v‖1‖u‖1 ≤ C′′‖φ‖
H

1/2
00 (Γj)

‖u‖1

∀φ ∈ H
1/2
00 (Γj), ∀u smooth.

By density of smooth functions in H1(Ω) and Hahn-Banach theorem we can
continue the mapping u 7→ (divΓuτ + κu · n)|Γj uniquely to a continuous linear
mapping from H1(Ω)N to (H1/2

00 (Γj))′. Since for any v ∈ H1
0t(Ω), v · n ∈

H
1/2
00 (Γj) (by Lemma 6), (10) holds for all u ∈ H1(Ω)N and v ∈ H1

0t(Ω) (the
integrals over Γj have a meaning as a duality pairing between (H1/2

00 (Γj))′ and
H

1/2
00 (Γj)).
To finish the proof we need to show only that if u ∈ H1

0t(Ω), then divΓuτ = 0
on Γj . For this first note that since u 7→ κu ·n|Γj is linear and continuous from
H1(Ω)N to L2(Γj) ⊂ (H1/2

00 (Γj))′, the operator u 7→ divΓuτ |Γj is also continuous
from H1(Ω)N to (H1/2

00 (Γj))′, and then use the fact that

〈divΓuτ , φ〉Γj = −
∫

Γj

uτ · ∇τφ ∀φ ∈ C1
c (Γj)

and the density of C1
c (Γj) in H

1/2
00 (Γj).

6 Equivalence of the Strong and Weak Forms

In this section we will prove that (1) in V is equivalent to the weak problem
(5), and that (3) in H1

0t(Ω) is equivalent to the weak problem (7). It follows
that problem (1) is uniquely solvable in V and problem (3) is uniquely solvable
in H1

0t(Ω). We will also show that problems (2) and (3) are equivalent with the
divergence boundary condition having a meaning in the sense of traces.

Let us first deal with problem (1).

Lemma 8 Let Ω and f be as in Section 2. Then the problem of finding u ∈ V
satisfying (1) is equivalent to solving the weak problem (5).

Proof. Let u ∈ V be a solution of (1). Then −4u = curl curl u ∈ L2(Ω))
and so the formal calculations leading to (5) can be rigorously justified.

Conversely, if u ∈ V satisfies (5), then by using v ∈ D(Ω)N and transferring
all derivatives to v we get −4u = f in the sense of distributions. For any
φ ∈ D(Ω) we can find g ∈ H1

0 (Ω) such that 4g = φ. Now use v = ∇g in the
weak form (note that ∇g ∈ V ). We get∫

Ω

(div u)φ =
∫

Ω

f · ∇g = −
∫

Ω

(div f)g +
∫

Γ

(f · n)g = 0,

10



so div u = 0 in the sense of distributions. Consequently the problem (1) (in V )
and the weak form (5) are equivalent.

Corollary 1 The problem (1) has a unique solution uV in V .

In the proof of the theorem we used the fact that ∇g ∈ V . If we were dealing
with the weak form in H1

0t(Ω), then ∇g may not have been a legitimate test
function (in the case g 6∈ H2(Ω)), which would make it impossible to prove that
div u = 0. This is the difference between the weak problems (5) and (9), even
though they appear very similar.

The corresponding proof for the problem (3) is a little more difficult, but
follows the same pattern.

Lemma 9 Let Ω and f be as in Section 2. Assume in addition that the boundary
Γ is piecewise C1,1 and the jump condition (6) is satisfied. Then the problem of
finding u ∈ H1

0t(Ω) satisfying (3) is equivalent to solving the weak problem (7).

Proof. We first have to show that the boundary condition

∂u
∂n

· n + κu · n = 0 on Γ

has a meaning for u ∈ H1
0t(Ω) with 4u ∈ L2(Ω). Since ∇u ∈ L2(Ω)N and

div∇u ∈ L2(Ω), the gradient has a normal trace on the boundary
∂u
∂n

∈
H−1/2(Γ) (see [2] for example). For φ ∈ H

1/2
00 (Γj) we have φn ∈ H1/2(Γ)

(using the extension of φ by zero) and therefore the boundary condition may be
interpreted as

〈∂u
∂n

+ κu, φn〉Γ = 0 ∀φ ∈
n∏

j=1

H
1/2
00 (Γj), (11)

or, equivalently,

〈∂u
∂n

+ κu,v〉Γ = 0 ∀v ∈ H1
0t(Ω), (12)

where 〈·, ·〉Γ is the duality pairing between H−1/2(Γ) and H1/2(Γ).
Let u ∈ H1

0t(Ω) be a solution of (3). Using (12) we can justify to formal cal-
culations leading to the weak form (7) (the boundary integrals in the weak form
should be understood as duality pairings between (H1/2

00 (Γj))′ and H
1/2
00 (Γj)).

Conversely, if u ∈ H1
0t(Ω) satisfies (7), then by using v ∈ D(Ω)N we get as

before −4u = f in the sense of distributions. For any v ∈ H1
0t(Ω), integrating

by parts in the weak form (note that 4u ∈ L2(Ω)N ) we get

−
∫

Ω

4u · v + 〈∂u
∂n

,v〉Γ +
n∑

i=1

∫
Γj

κu · v =
∫

Ω

f · v,

hence (12) is satisfied. Consequently the problem (3) (in H1
0t(Ω)) and the weak

form (7) are equivalent.

11



Corollary 2 The problem (3) has a unique solution ũ in H1
0t(Ω).

Now we will show that problems (2) and (3) are equivalent. The only dif-
ference in these two problems is in the boundary condition, so we have to show
that the divergence boundary condition makes sense and is equivalent to the
boundary conditon in (3). This is done in the following lemma.

Lemma 10 Assume Ω satisfies the conditions of Lemma 9. For u ∈ H1
0t(Ω)

with 4u ∈ L2(Ω)N , and any j ∈ {1, . . . , n}, the trace of div u on Γj exists and
belongs to (H1/2

00 (Γj))′, and

div u|Γj =
∂u
∂n

· n|Γj + κu · n|Γj .

Proof. This follows from Lemma (7) which gives the formula for smooth u
without the condition u×n = 0. By density this can be extended to u ∈ H1(Ω)N

with 4u ∈ L2(Ω)N . Then use the fact that for u ∈ H1
0t(Ω) we have div Γuτ = 0

(see the end of proof of Lemma 4).

Corollary 3 Problems (2) and (3) are equivalent.

Let us summarize the results in a theorem:

Theorem 2 Assume that Ω is a bounded subset of RN with a connected, Lip-
schitz boundary. Let f ∈ L2(Ω)N with div f = 0 be given. Then

a) The problem (1) in V is equivalent to the weak form (5) and has a unique
solution uV ∈ V .

b) If in addition the boundary is piecewise C1,1 and satisfies the jump con-
dition (6), then the problems (2) and (3) in H1

0t(Ω) are both equivalent to weak
problems (7) and (9), and have a unique solution uH ∈ H1

0t(Ω).

7 Relationship of the V and H1
0t(Ω) Formulations

Let uV ∈ V be the solution of (5) (or the strong form (1 with the interior
divergence condition) and let uH ∈ H1

0t(Ω) be the solution of (9) (which under
the additional smoothness conditions is equivalent to problems (2) and (3) with
the divergence boundary condition). In this section we will discuss when the
two solutions are the same. The following is clearly true.

Lemma 11 Let Ω and f be as in Section 2. Assume in addition that the jump
condition (6) is satisfied. Then the following are equivalent

a) uV = uH ;
b) div uH = 0 in Ω;
c) uV ∈ H1

0t(Ω).

Let us now examine when uV = uH . First, note that lemma 5 implies
that H1

0t(Ω) is closed in V . We have two possibilities: either V = H1
0t(Ω)

or V 6= H1
0t(Ω). In the first case the solutions are obviously the same (the

corresponding weak forms are exactly the same). The following lemma gives
the necessary and sufficient conditions for the equality of the spaces.

12



Lemma 12 Assume that Ω is a bounded subset of RN with a connected Lip-
schitz boundary. The spaces V and H1

0t(Ω) are equal if and only if the homo-
geneous Dirichlet problem for the scalar Poisson equation with any right hand
side in D(Ω) has a solution in H2(Ω).

Proof. Suppose that the regularity condition holds. For any given w ∈ V
we can solve the weak problem: find u ∈ H1

0t(Ω) such that

a(u,v) = a(w,v) ∀v ∈ H1
0t(Ω) (13)

(i.e. u is a projection of w onto H1
0t(Ω) corresponding to the scalar product

a(·, ·) ). As in the proof of Lemma 8 we can show that 4(u − w) = 0, and
using the H2-regularity of the solution of the Dirichlet problem for the Poisson
equation we also get div (u−w) = 0. Since (u−w)×n|Γ = 0, by the uniqueness
of solution of (1) we have u = w, i.e. w ∈ H1

0t(Ω). Consequently V = H1
0t(Ω).

Now suppose that there is g ∈ H1
0 (Ω) such that 4g ∈ D(Ω), but g 6∈ H2(Ω).

Then ∇g ∈ V , but ∇g 6∈ H1
0t(Ω), so V 6= H1

0t(Ω).

Note that the lemma remains true if one substitutes L2(Ω) for D(Ω).

Corollary 4 If Ω is convex or has a C1,1 boundary then V = H1
0t(Ω).

This follows from the classical regularity theory about the smoothness of the
solution of the Dirichlet problem for the Poisson equation. It is actually enough
to assume that Ω is locally convex near the points where the boundary is not
C1,1 (i.e. these points have a neighborhood whose intersection with Ω is convex).

The question of the equality of these spaces (and analogous ones with a
boundary condition for the normal trace) has been partly answered by different
authors, but we are unaware of results as sharp as these presented here. In the
classical book [2] it is proved that V = H1

0t(Ω) if Ω is a convex polygon or has
a C1,1 boundary. Necessary and sufficient conditions for V = H1

0t(Ω) to hold in
R2 are given in [6], namely that the scalar Poisson equation with L2(Ω) right
hand side must have a solution in H2(Ω) both with Dirichlet and Neumann
condition. As we saw, the regularity of solution of the Neumann problem is
not needed, and in R2 it actually follows from the regularity of solution of the
Dirichlet problem.

In the other case, when H1
0t(Ω) and V are not identical, since H1

0t(Ω) is
closed in V , there is f ∈ L2(Ω) with div f = 0 for which the solution of (1) is in
V , but not in H1

0t(Ω). This means that the interior and boundary divergence
formulations are not equivalent and give different solutions for this f . We will
show how to construct f for which uV 6= uH whenever V 6= H1

0t(Ω).

Lemma 13 If V 6= H1
0t(Ω) than there is f ∈ L2(Ω) with div f = 0 such that the

corresponding solution of (1) is not in H1
0t(Ω).

Proof. If V 6= H1
0t(Ω) then we can choose a nonzero w ∈ V such that

a(w,v) = 0 ∀v ∈ H1
0t(Ω). (14)
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First note that curlw 6= 0: indeed, if we had curlw = 0 then∫
Ω

div w · div v = 0 ∀v ∈ H1
0t(Ω), (15)

and hence (by using v ∈ D(Ω)N )), ∇div w = 0, or div w =const. It follows
from (15) that

∫
Ω

div v = 0 for all v ∈ H1
0t(Ω), which is a contradiction.

Now let f ∈ V be a solution of

a(f ,v) =
∫

Ω

curlw · curl v ∀v ∈ V. (16)

Note that f 6= 0 and div f = 0. We claim that for this f problem (1) has a
solution uV ∈ V which is not in H1

0t(Ω). Indeed, using the weak problem (5)
and (16) we get

a(u,w) =
∫

Ω

curl u · curlw = a(u, f) =
∫

Ω

|f |2 6= 0,

which by (14) implies that uV 6∈ H1
0t(Ω).

We can also give a more tangible example of a solution of (1) which does
not belong to H1

0t(Ω). Suppose Ω ⊂ R3 is such that in a neighborhood of some
x0 ∈ Γ its boundary consists of 2 planes with the interior angle α > π. Choose
a cylindrical coordinate system (r, θ, z) with the origin at x0, z-axis along the
edge and θ = 0, θ = α on the boundary. Let φ ∈ C∞(Ω̄), depending on r and
z only, be such that φ ≡ 1 near the origin and φ ≡ 0 outside a neighborhood of
the origin where the pieces of Γ are planar. Put

u(x, y, z) = curl
(

φ(r, z)rπ/α cos
πθ

α
ez

)
,

where ez is the unit vector in direction of z-axis. Then div u = 0 and

u× n =
∂

∂n

(
φ(r, z)rπ/α cos

πθ

α

)
ez = 0 on Γ.

It follows that u is a solution of (1) with f = −4u ∈ L2(Ω) and div f = 0. In
addition, f ≡ 0 near the origin. Since u 6∈ H1

0t(Ω) and the problem (2) with the
same f has a solution ũ ∈ H1

0t(Ω), we must have ũ 6= u and div ũ 6= 0.
This example is essentially two-dimensional. To make it work for Ω ⊂ R2

in a neighborhood of a corner with the interior angle α > π we just use φ
independent of z. Note that the third component of u is zero, and we get
f ∈ C∞(Ω̄)2.

We will state these results as a theorem:

Theorem 3 Assume that Ω is a bounded subset of RN with a Lipschitz bound-
ary. The following are equivalent:

a) uV = uH for any f ∈ L2(Ω)N with div f = 0;
b) V = H1

0t(Ω);
c) the Dirichlet problem for the scalar Poisson equation with any smooth

right hand side has a solution in H2(Ω).
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8 Generalization to Helmholtz equation

Most of the arguments above remain true in case of Helmholtz equation. The
only difference is in the coercivity, which now will not be sufficient for using
Lax-Milgram. Let us sketch the results briefly. The analog of problem (1) is
now: find u ∈ V such that

−4u− k2u = f in Ω,

div u = 0 in Ω,

u× n = 0 on Γ.

(17)

We assume that f ∈ L2(Ω)N and the compatibility condition div f = 0 is satis-
fied. To formulate the weak problem let us define

b(u,v) =
∫

Ω

curl u · curl v + div u div v − k2u · v ∀u,v ∈ V.

Then the weak problem corresponding to (17) is to find u ∈ V such that

b(u,v) =
∫

Ω

f · v ∀v ∈ V. (18)

The coercivity result is that b(u,u) ≥ C‖u‖2
V − k2‖u‖2

L2 (if k2 is complex,
we should use the real part). We cannot use Lax-Milgram directly. Instead
we can use the Fredholm alternative to show the existence and uniqueness of
the solution. Define operator AV : L2(Ω) → L2(Ω) by the requirement that
AV g ∈ V is the solution of a(u,v) =

∫
Ω g ·v ∀v ∈ V (note that we do not need

the compatibility condition div g = 0 to guarantee the solvability of the weak
problem). By the Lax-Milgram Lemma and the compact embedding theorem
(Theorem 1) AV is a compact operator. Then the solution of (18) is the solution
of u = AV (k2u + f), and if 1/k2 is not an eigenvalue of AV then (18) has a
unique solution u ∈ V . The operator AV has two kinds of eigenfunctions: ones
that are divergence-free, and others which are gradients of the eigenfunctions of
the scalar laplacian with Dirichlet boundary conditions. Assuming that 1/k2 is
not an eigenvalue of AV , one can prove the equivalence of the strong and weak
problems similarly to the proof of Lemma 8 (in proving that the solution of the
weak form satisfies the divergence condition we need solvability of the scalar
Helmholtz equation with Dirichlet boundary conditions, which follows from the
fact that if 1/k2 is not an eigenvalue of AV , then it is not an eigenvalue of the
scalar laplacian with the Dirichlet boundary conditions).

The analog of problem (2) is to find u ∈ H1
0t(Ω) such that

−4u− k2u = f in Ω,

div u = 0 on Γ,

u× n = 0 on Γ
(19)

and the corresponding weak problem is to find u ∈ H1
0t(Ω) such that

b(u,v) =
∫

Ω

f · v ∀v ∈ H1
0t(Ω). (20)
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One can deal with the coercivity as above, using the operator AH : L2(Ω) →
L2(Ω) defined by: AHg ∈ H1

0t(Ω) is the solution of a(u,v) =
∫

g·v ∀v ∈ H1
0t(Ω).

Equivalence of the strong and weak forms follows similarly to the zero frequency
case.

The question when the two weak problems (18) and (20) give the same
solution can be answered as in section 7. Most of the results presented there do
not depend on the frequency. The counterexamples are also easy to modify: if
uV 6∈ H1

0t(Ω) is a solution of (1), then it is also a solution of (17) with the right
hand side f −k2uV . Theorem 3 remains true if we assume in addition that 1/k2

is not an eigenvalue of either AV or AH and let uV and uH be the solutions of
the weak problems (18) and (20) correspondingly.

Similar results can be proved for time-dependent problems, such as vec-
tor wave equation and Maxwell’s equations. Even with divergence-free initial
conditions, using a weak form in H1

0t(Ω) (similar to (20)) may give a solution
not satisfying the divergence constraint. Again, this can happen only if the
H2-regularity of the Dirichlet problem for the scalar Poisson equation fails.

9 Conclusions

We saw that in some cases (e.g. for nonconvex polygons) the boundary diver-
gence formulation is not equivalent to the interior divergence formulation, and
the weak form (9) or (20) (the weak forms in H1

0t(Ω)), while uniquely solvable,
may not have a divergence-free solution. In this case all approximation meth-
ods based on these weak formulations (e.g. the usual finite element method,
the least squares method) will converge to a spurious solution (not satisfying
the divergence constraint). To avoid the spurious solution, one should use the
weak form in V , but this is not straightforward: one has to use basis functions
which are in V , but not in H1

0t(Ω) (e.g. the singular solutions around the re-
entrant corners), in addition to the usual ones. The same is true about the
penalty method, where the weak form contains a penalty parameter in front
of the term with divergence. If the solution of the original problem is not in
H1

0t(Ω), then any choice of the penalty parameter will result in a spurious solu-
tion — in fact, the smaller one makes the divergence (by choosing larger values
of the parameter), the bigger the error is in the curl of the solution.

On the other hand, when the formulations are equivalent (this is the case
when the solution of the Dirichlet problem for the scalar Poisson equation is in
H2(Ω)), then one can use the weak forms in H1

0t(Ω). This enables one to use
simpler algorithms, e.g. finite element methods with piecewise linear test and
trial functions. The equivalent formulation in terms of gradients (as in (7)) may
be especially useful, since it decouples the field components inside the domain.
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